
「 学 び の 過 程 」を 通 し て , 資質・能力を系統的に育む理科学習 ~ 触れる・学ぶ・考える教材・教具のエ夫 ~

北斗市立茂辺地中学校 教諭 菊地 友佳子

○ 函館市および近郊の理科教員が参加している研究サークル

○ 過去の函中理研究のキーワードの例

『生徒の「問い」や「発想」』

『直接的な体験』

『科学的探究能力』

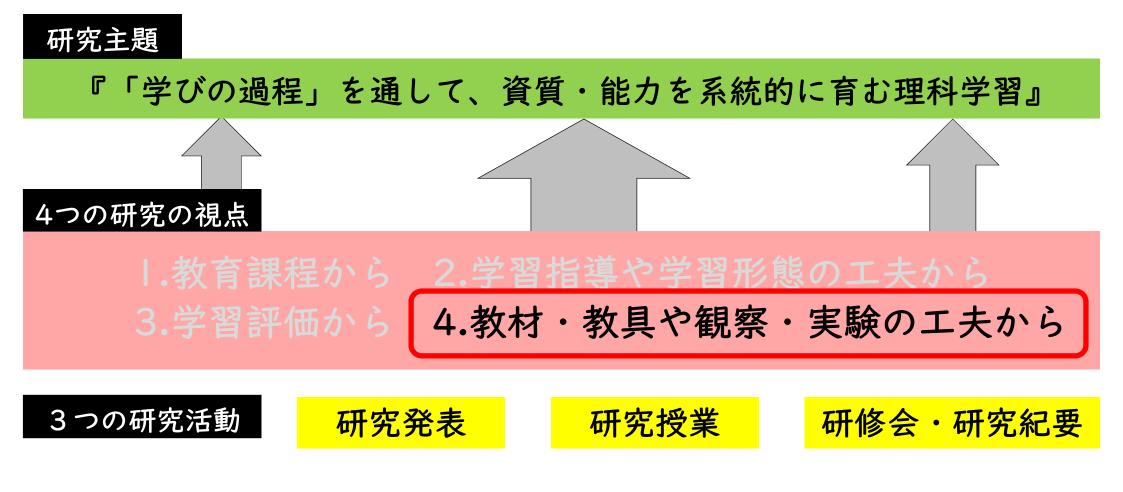
〇令和3年度から現在の学習指導要領が全面実施

理科の見方・考え方

資質・能力の育成

R3~R7 函中理研究主題

『学びの過程』を通して、資質・能力を 系統的に育む理科学習

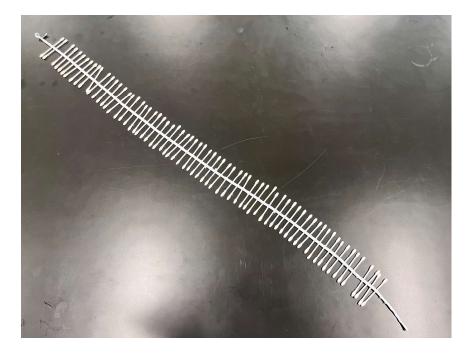

『学びの過程』	を通して、	資質・能力	力を系統的に	育む理科学習
---------	-------	-------	--------	--------

生 徒	課題の把握	自然事象に対する"気づき"や"問い"→課題の設定
生徒(学習者)	課題の探究	→仮説の設定→検証計画の立案→観察・実験の方法→結果の処理
習者)	課題の解決	→考察・推論→表現・伝達
教師(指導者)	学習前	必要とされる(身に付ける)資質・能力→単元の学習目標 →目標達成に必要な理科の見方・考え方【P】
(指 道	学習指導	→学習指導【D】
7者)	学習後	→学習評価【C】【A】

『学びの過程』を通して、資質・能力を系統的に育む理科学習

生 徒	課題の把握	
生徒(学習者)	課題の探究	生徒の探究の過程と
自者)	課題の解決	その学習をデザインするために
教師	学習前	教師に必要とされる
教師(指導者)	学習指導	事項の両方の意味合い
"者)	学習後	

OR3~R7 研究の全体構造

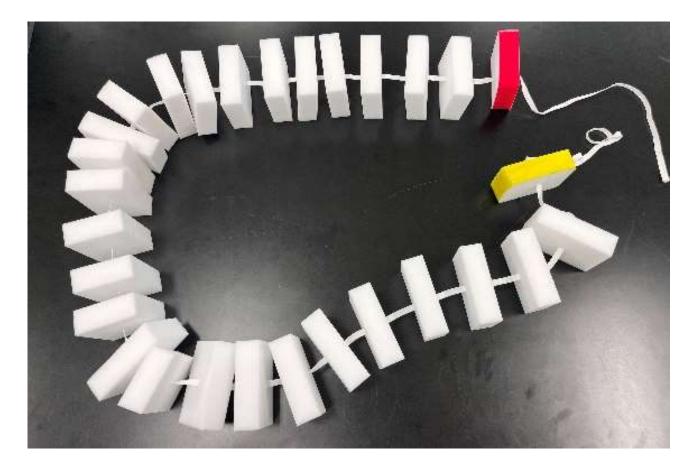


本実践のねらい

|校目(|年目~4年目) 40人 × 6クラス |年生 |人 最大3人~ 2校目(5年目~) 2年生 3人 3年生 1人 0 全員ができる実験 触れる・学ぶ・考える教材・教具の工夫 【副題】

実践内容①

〈第2分野 大地の成り立ちと変化〉


課題

- ・演示実験のみ
- ・すぐ壊れる
- ・1年きり
- ・作成時間がかかる
- ・ばねではP波とS波を同時に 見ることができない

実践内容②

波の伝わり方を調べる実験

〈第2分野 大地の成り立ちと変化〉

- ・材料
 - メラミンスポンジ ゴム紐
- ・使い方 吊り下げて I 番下の スポンジをたたく

実践内容(2)

波の伝わり方を調べる実験

〈第2分野 大地の成り立ちと変化〉

成果

- ・速く細かい初期微動と、ゆっくり大きな主要動の様子を 視覚的に理解することができた。
- ・P波とS波を同時に観察することができた。
- ・5年経っても修復不要。
- ・誰でも簡単に、安価で作成することができた。
- ・誰でも簡単に、操作することができた。

実践内容2

〈第2分野 気象とその変化〉


課題

- ・演示実験のみ
- ・1回きり
- ・ガスバーナーへの
 - 抵抗、危険

実践内容(2)

大気圧を確認するための実験

〈第2分野 気象とその変化〉

・材料 (2L) ペットボトル 直径5mmの発泡スチロール球 ペットボトル用加圧式霧吹き ・使い方 レバーを押したり、引いたり することで空気をペットボト ルに入れる。

実践内容(2)

大気圧を確認するための実験

〈第2分野 気象とその変化〉 成果

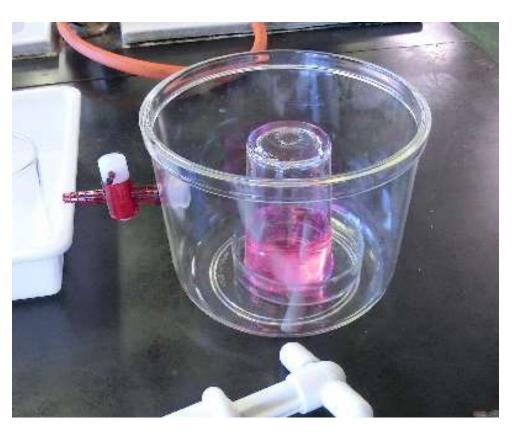
- ・発泡スチロール球の体積が小さくなることで
 気圧が大きくなっていることが視覚的にわかる。
 ・修復不要。
- ・誰でも簡単に、安価で作成することができた。
- ・誰でも簡単に、操作することができた。
- ・ほんのりと<mark>温かく</mark>なることから、
 - 気圧と温度変化の関係に気づくことができた。

実践内容③

〈第2分野 気象とその変化〉

課題

- ・演示実験のみ
- ・1回きり
- ・ガスバーナーへの


抵抗、危険

「真空には物を 引っ張る力がある」 誤概念

実践内容(3)

大気圧と圧力の導入部分の実験

〈第2分野 気象とその変化〉

- ・材料
 ガラスコップ シャーレ
 簡易真空容器 (色水)
- ・使い方

簡易真空容器の中に、水の 入ったコップを逆さにして入れ る。コップの中には水+空気を 入れ、周りの空気を抜いていく。

実践内容(3)

大気圧と圧力の導入部分の実験

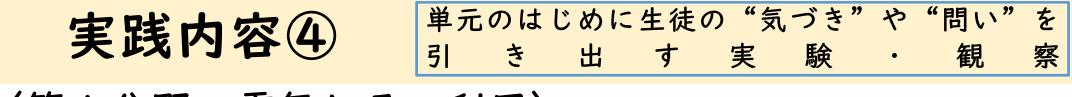
〈第2分野 気象とその変化〉 成果

- ・気圧の差を視覚的に理解することができた。
- 「真空には物を引っ張る力がある」と考えている誤概念が、
 直接的な体験を通して「コップ内の空気が押して水が出てくる」に変わった。
- ・誰でも簡単に、操作することができた。

実践内容④

単元のはじめに生徒の"気づき"や"問い"を 引き出す実験・観察

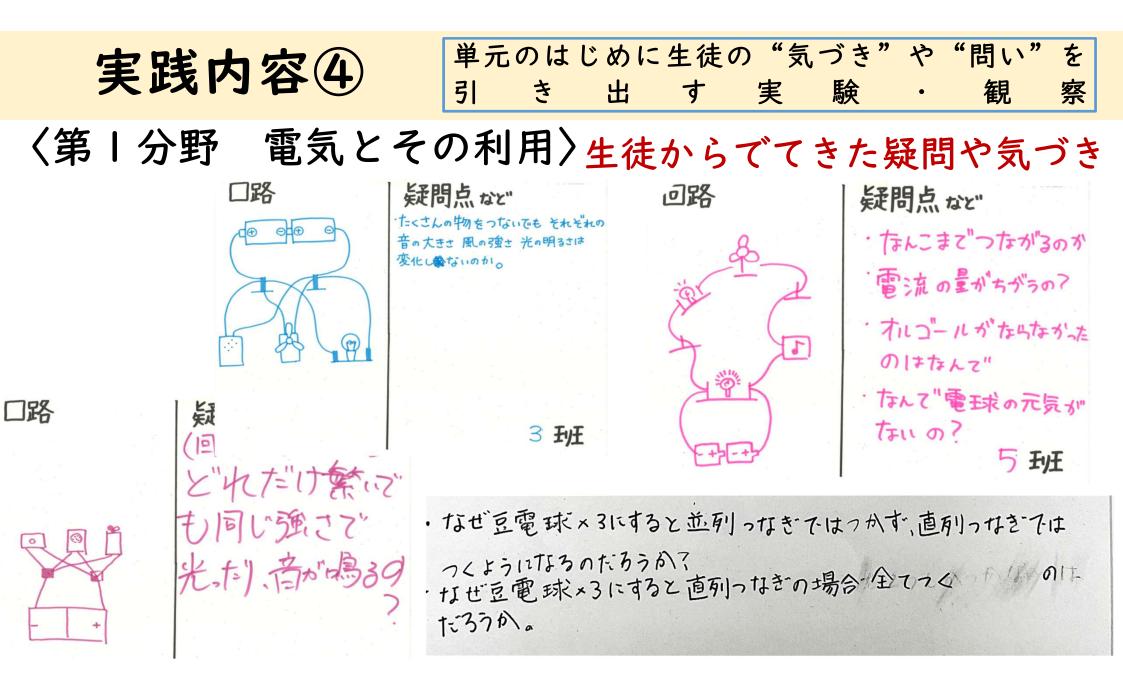
函中理 研究主題

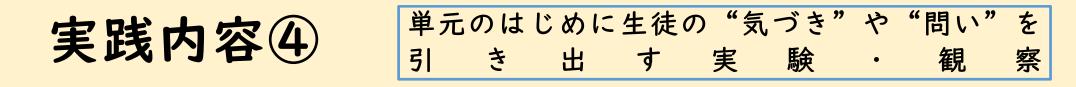

『学びの過程』を通して、資質・能力を系統的に育む理科学習		
生徒	課題の把握 自然事象に対する "気づき" や "問い"→課題の設定	
生徒(学習者)	課題の探究 →仮説の設定→検証計画の立案→観察・実験の方法→結果の処理	
百者)	課題の解決→考察・推論→表現・伝達	

実践内容④

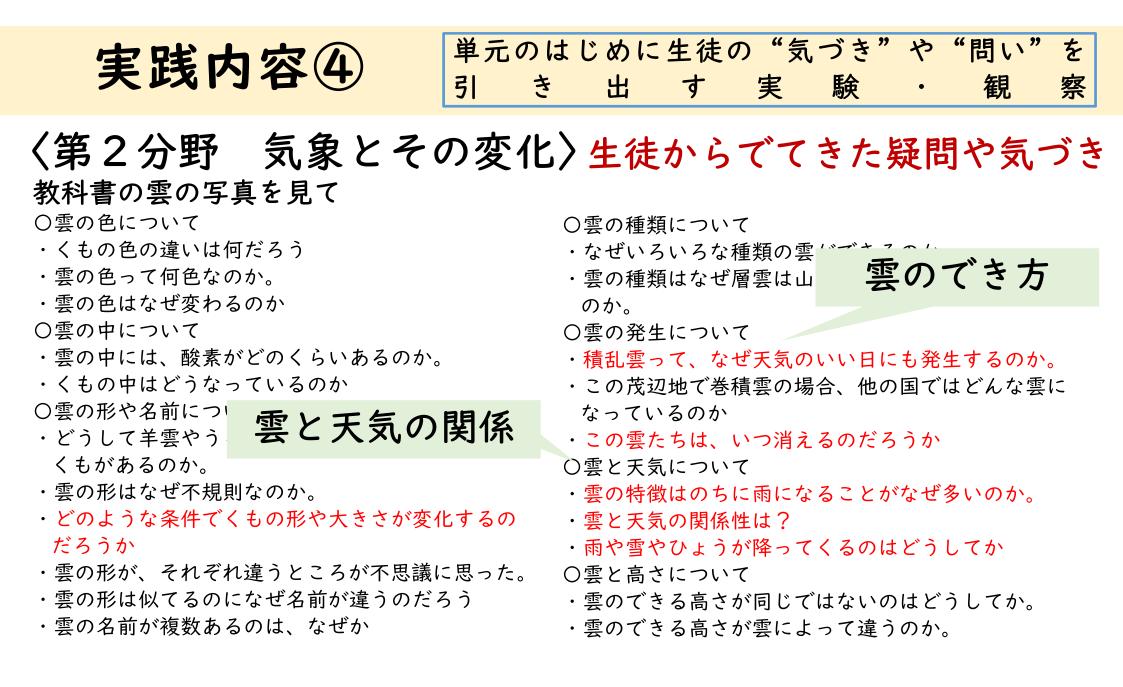
単元のはじめに生徒の"気づき"や"問い"を 引き出す実験・観察

〈第 | 分野 電気とその利用〉

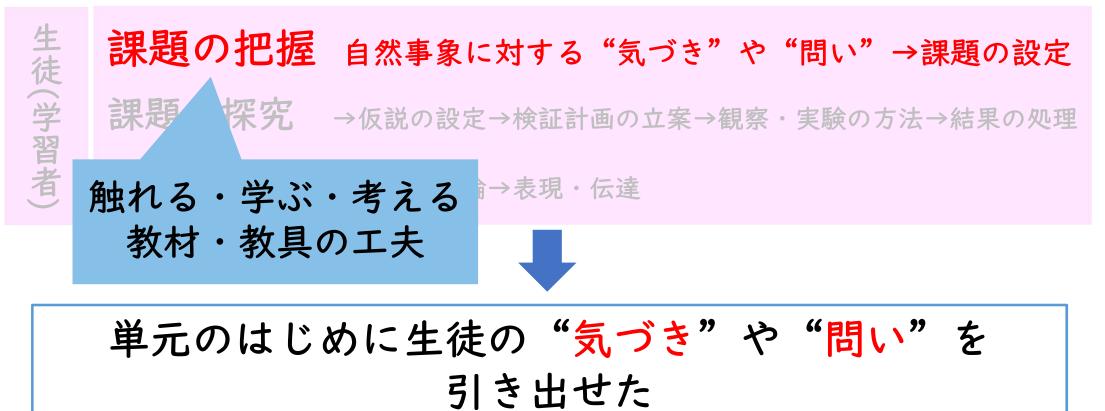

〈第2分野 気象とその変化〉


〈第丨分野 電気とその利用〉

・教科書の導入をもとに工夫
 豆電球2個 乾電池2個
 導線
 豆電球
 モーター オルゴール
 豆電球
 乾電池は無制限


実践内容④	単元のは 引 き		• • •			を 察
〈第 分野 電気とその	の利用〉					
生徒からでてきた疑問	りや気づい	き	回	路図の書	書き方 しょうしょう しょう	
・回路を簡単に書くには? 電流の正体、モーター						
・どうして光るのか?		电川	」 () IE 将、	、 七一)	_	
・電流に向きはあるのな	か?	電流	、電圧、	電力		
・つないだものの量によって明るさや動きが変わる!						
・つなぎ方によって動	く、動か	ないが	ある!			
直列回路、並列回路		次回	からの	り授業	課題	

〈第2分野 気象とその変化〉


ー人ー台端末の活用 ・教科書の導入を もとに工夫 2種類の雲の写真 天気予報の動画 すべての種類の雲 の写真

実践内容④ 引	のはじめに生徒の"気づき"や"問い"を き 出 す 実 験 ・ 観 察				
 天気予報の動画を ○気圧について ・低気圧 高気圧ってどうやって発生してるの? →またなんの影響があるのか詳しくわからない ・低気圧と低気圧でなんで雷が発生するの? ・雲以外にも気圧も関係しそう ○なぜ予測できるかについて ・なんで風を予測できる? 	 化〉生徒からゴームに用いたゴーム の雨について ・雨ってどうやって発達していってるのか ・そもそもどうして雨や雪が発生してるの?(それは日本だけじゃなくて) のいろいろ ・日本は日本でも、北海道と青森では天気がちがかった。 ・天気はすべて風が動かしているのではないか? ・天気にすべて風が動かしているのではないか? 				
 ・気温はなんで予想できるの? ・どうして、先の天気がわかるのか ○雲について ・天気は雲で動 場所に雲が留まるこ ・雷は雲とどのよう† ・わりがあるのだろうか ・雲の色や形によっ」くんきが変わるのだろうか ・雲は地球のどこから発生しているのだろうか ・雲は風で動いているのか 	 ・ 天気が急にかわるのはどうしてか ・ どうして、日本各世で下気の日々が違うのか ・ なぜ各地で天気が ・ なぜ時間によって ・ 天気はどうやって 赤セスのか ・ そもそも天気って ・ 天気が悪い県に近 はなぜか ・ なぜ、日本から少し外れた海のほうの雨雲も天気予報 で表示するのか 				

実践内容④

成果

実践内容④

成果

・一人ひとりが実験、観察に関わることができたことや、
 自由の高い"遊び"の場面になったことから、
 知的好奇心を喚起させることができた。

・ "気づき"や "問い"を解決するような授業展開を組む ことができたので、生徒の振り返りの記述からも興味関 心が高まっていることが分かった。

まとめ

実践①~④を通しての成果 函中理研究主題 『「学びの過程」を通して、資質・能力を系統的に育む理科学習』 4つの研究の視点

1.教育課程から 2.学習指導や学習形態のエ夫から
 3.学習評価から 4.教材・教具や観察・実験のエ夫から

【副題】触れる・学ぶ・考える教材・教具の工夫

まとめ

実践①~④を通しての成果

- ・授業者が比較的容易に準備ができ、加えて授業者・生徒が操作も
 単純で何度も繰り返し実験することで、主体的に学習する意欲が
 高まったと感じた
- ・生徒一人ひとりが実際に教材・教具に触れることができることで、
 理科への興味関心が高まり、生徒自らの"気づき"や"問い"
 が生まれて、深い学びにつながっていることを実感できた
- ・「学びの過程」における"課題の発見"の学習を計画的に行う ことで、知的好奇心を高めることができた

まとめ

実践①~④を通しての課題

- ・実験・観察の時間の確保
- ・その教材・教具を使うことのねらいを明確にすること
- ・生徒の目線に立った教材・教具の工夫の難しさ
- ・その教材・教具と、日常生活との結びつき
- ・作成した教材・教具を交流する場

